Eisenstein Series and the Trace Formula

نویسنده

  • JAMES ARTHUR
چکیده

In the first part of these notes we shall try to describe the main ideas in the theory. Let G be a reductive algebraic matrix group over Q. Then G(A) is the restricted direct product over all valuations v of the groups G(Qu). If v is finite, define Ku to be G(uJ if this latter group is a special maximal compact subgroup of G(Qu). This takes care of almost all v. For the remaining finite v, we let KO be any fixed special maximal compact subgroup of G(Qu). We also fix a minimal parabolic subgroup PO, defined over Q , and a Levi component Mo of Po. Let An be the maximal split torus in the center of My. Let Ko be a fixed maximal compact subgroup of G(R) whose Lie algebra is orthogonal to the Lie algebra of Ao(R) under the Killing form. Then K = FI "KO is a maximal compact subgroup of G(A). For most of these notes we shall deal only with standard parabolic subgroups; that is, parabolic subgroups P, defined over Q , which contain Po. Fix such a P. Let N p be the unipotent radical of P, and let M p be the unique Levi component of P which contains Mo. Then the split component, Ap, of the center of M p is contained in A,,. If X(Mp)n is the group of characters of M p defined over Q , define LIP = Hom((Xp)@, R) . Then if 111 = \{^mu lies in M(A) , we define a vector H,&) in rip by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE ABSOLUTE CONVERGENCE OF THE SPECTRAL SIDE OF THE ARTHUR TRACE FORMULA FOR GLn

Let G be a reductive algebraic group defined over Q and let A be the ring of adèles of Q. The spectral side of the Arthur trace formula for G is a sum of distributions on G(A) which are defined in terms of truncated Eisenstein series. In general, the spectral side is only known to be conditionally convergent. In this paper we prove that for GLn, the spectral side of the trace formula is absolut...

متن کامل

On a Family of Distributions Obtained from Eisenstein Series

Introduction. The purpose of this paper is to find explicit formulas for those terms in the trace formula which arise from Eisenstein series. The paper is a continuation of [l(g)]. (We refer the reader to the introduction of [l(g)] for a general discussion as well as a description of the notation we will use below.) We have already solved the most troublesome analytic problem. The difficulties ...

متن کامل

A Trace Formula for Reductive Groups I Terms Associated to Classes in G(q)

Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 15 The kernel Kp(x, y) . . . . . . . . . . . . . . . . . . . . . . . . . . 919 A review of Eisenstein series . . . . . . . . . . . . . . . . . . . . . 924 The second formula for the kernel . . . . . . . . . . . . . . . . . . 928 The modified kernel identity . . . . . . . . . . . . . . . . . . . . . 935 Some geometric lemm...

متن کامل

An Introduction to the Trace Formula

Part I. The Unrefined Trace Formula 7 1. The Selberg trace formula for compact quotient 7 2. Algebraic groups and adeles 11 3. Simple examples 15 4. Noncompact quotient and parabolic subgroups 20 5. Roots and weights 24 6. Statement and discussion of a theorem 29 7. Eisenstein series 31 8. On the proof of the theorem 37 9. Qualitative behaviour of J (f) 46 10. The coarse geometric expansion 53 ...

متن کامل

Scattering Theory for Automorphic Functions

This paper is an expository account of our 1976 monograph [6] on Scattering theory for automorphic functions. Several improvements have been incorporated: a more direct proof of the meromorphic character of the Eisenstein series, an explicit formula for the translation representations and a simpler derivation of the spectral representations. Our hyperbolic approach to the Selberg trace formula ...

متن کامل

Equidistribution of Holonomy about Closed Geodesics

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Basic structure on symmetric spaces and Eisenstein series . . . . . . . . . . . . . . . . . 7 2. Harmonic analysis on groups and the Selberg trace formula . . . . . . . . . . . . . . . 11 3. Multiplicities of discrete series . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002